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Abstract
We have rigorously derived the perimeter-generating function for the mean-
squared radius of gyration of staircase polygons. This function was first
obtained by Jensen. His nonrigorous result is based on the analysis of the
long series expansions.

PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

In a recent letter, Jensen [1] derived long series expansions for the perimeter-generating
functions of the radius of gyration of various self-avoiding polygons on the square lattice
with a convexity constraint. He used the series to obtain six algebraic exact solutions for the
generating functions. In the special cases of rectangular, Ferrers and pyramid polygons, the
exact solutions are relatively simple and have been proved rigorously by Lin [2]. We shall
rigorously derive the generating function for the mean-squared radius of gyration of staircase
polygons.

The perimeter-generating function for the number of self-avoiding polygons on the square
lattice is given by

P(z) =
∞∑

n=2

pnz
n, (1)

where pn is the number of self-avoiding polygons with perimeter 2n. The perimeter-generating
function for mean-squared radius of gyration of polygons is given by [1]

R(z) =
∞∑

n=2

rnz
n, (2)
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where

rn =
∑
�n

2n−1∑
i,j=0

[(xi − xj )
2 + (yi − yj )

2]/2

=
∑
�n


2n

2n−1∑
j=0

(
x2

j + y2
j

) −

2n−1∑

j=0

xj




2

−

2n−1∑

j=0

yj




2

 , (3)

the symbol �n means the set of all polygons of perimeter length 2n, and the coordinate of
each vertex on the polygon is denoted by (x, y).

The staircase polygon was first studied by Pólya [3] who showed for n > 1 that

pn = (2n!)

(4n − 2)n!2
. (4)

Consequently, the perimeter-generating function is

P(z) = (1 − 2z − √
1 − 4z)/2. (5)

The anisotropic staircase polygon was studied by Lin et al [4] and the corresponding perimeter-
generating function is

P(x, y) =
∞∑

r=1

∞∑
s=1

pr,sx
rys = [

1 − x − y −
√

(1 − x − y)2 − 4xy
]/

2, (6)

where pr,s is the number of staircase polygons with horizontal width r and vertical height s.
The staircase polygons with 2n steps are formed from a directed walk as follows. The

directed walk starts from the origin with a1 right steps, followed by b1 up steps and so on until
a1 + b1 + · · · + ai + bi = n. Then, the walk returns to the origin with c1 left steps, followed by
d1 down steps and so on until c1 + d1 + · · · + cj + dj = n. We have [2]

2n

2n−1∑
j=0

(
x2

j + y2
j

) −

2n−1∑

j=0

xj




2

−

2n−1∑

j=0

yj




2

=
9∑

m=1

gm (7)

where
g1 = n2(n2 + 2)/3 g2 = −2n2[A(a, b) + A(c, d)]

g3 = 2[A(a, b) + A(c, d)]2 g4 = −4[A(a, b)]2

g5 = −4[A(c, d)]2 g6 = 2nB(a, b)

g7 = 2nB(c, d) g8 = 2nC(a, b)

g9 = 2nC(c, d)

and A(a, b), B(a, b) and C(a, b) are defined by

A(a1, b1) = B(a1, b1) = C(a1, b1) = 0 (8)

A(a, b) = ai(b1 + · · · + bi−1) + ai−1(b1 + · · · + bi−2) + · · · + a2b1 (9)

B(a, b) = ai(b1 + · · · + bi−1)
2 + ai−1(b1 + · · · + bi−2)

2 + · · · + a2b
2
1 (10)

C(a, b) = b1(a2 + · · · + ai)
2 + b2(a3 + · · · + ai)

2 + · · · + bi−1a
2
i . (11)

The contribution of gm to the radius of gyration generating function is denoted by Rm(z) and
we have

R(z) =
9∑

m=1

Rm(z), (12)
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Figure 1. A staircase polygon with 2n steps and area k is bounded by an r × s rectangle.

where

R1(z) =
∞∑

n=2

[n2(n2 + 2)/3]pnz
n =

[
1

3

(
z

d

dz

)4

+
2

3

(
z

d

dz

)2
]

P(z)

= z(1 − 6z + 24z2 − 24z3)

(1 − 4z)7/2
− z. (13)

We have

R4(z) = R5(z) R6(z) = R7(z) = R8(z) = R9(z) (14)

directly from rotation and reflection symmetries of the staircase polygons.
A staircase polygon with 2n steps and area k is bounded by an r × s rectangle as shown in

figure 1. The bounding rectangle is divided into three polygons. It follows from the definition
of A that the area of the polygon located in the upper-left corner is A(c, d) and the area of the
polygon in the lower-right corner is A(a, b). We have

A(a, b) + A(c, d) = rs − k. (15)

Enting and Guttmann [5] considered two generating functions for the area-weighted
moments of the number of convex polygons on the square lattice:

P1(z) =
∑

n

zn

[∑
k

kcn,k

]
P2(z) =

∑
n

zn
∑

k

[k(k − 1)/2]cn,k, (16)

where cn,k is the number of polygons with 2n steps and area k. Based on the series expansions,
they nonrigorously obtained these two generating functions. Their results are confirmed
rigorously by Lin [6, 7]. We use the methods of Lin [8] and Temperley [9] to obtain the
following generating functions for the area-weighted moments of the number of staircase
polygons:

P1(z) =
∑

n

zn

[∑
k

kcn,k

]
= z2

1 − 4z
(17)

P1(x, y) =
∑
r,s

xrys

[∑
k

kcr,s,k

]
= xy

(1 − x − y)2 − 4xy
(18)

P2(z) =
∑

n

zn

[∑
k

k2cn,k

]
= z2(1 − 2z + 2z2)

(1 − 4z)5/2
(19)
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where cr,s,k is the number of staircase polygons with width r, height s and area k. The
generating functions P1 and P2 can also be computed from the functional equations, which
the perimeter and area generating functions satisfy [10, 11].

It follows from equation (15) that

R2(z) = −2

(
z

d

dz

)2 [
xy

∂2

∂x∂y
P (x, y)

]
x=y=z

+ 2

(
z

d

dz

)2

P1(z)

= −8z2(1 − 5z + 16z2 − 18z3)

(1 − 4z)7/2
+

8z2(1 − 3z + 4z2)

(1 − 4z)3
(20)

where P(x, y) is defined by (6). It follows from

[A(a, b) + A(c, d)]2 = r2s2 − 2rsk + k2 (21)

that

R3(z) =
[

2

(
x

∂

∂x

)2 (
y

∂

∂y

)2

P(x, y) − 4

(
x

∂

∂x

) (
y

∂

∂y

)
P1(x, y)

]
x=y=z

+ 2P2(z)

= 4z2(1 − 6z + 17z2 − 24z3 + 12z4)

(1 − 4z)7/2
+

4z2(−1 + 4z − 10z2 + 8z3)

(1 − 4z)3
. (22)

We define three generating functions

G1(x, y) =
∑
r,s

xrys

[∑
A

Acr,s,A

]
(23)

G2(z) =
∑

n

zn

[∑
B

Bcn,B

]
(24)

G3(z) =
∑

n

zn

[∑
A

A2cn,A

]
(25)

where cr,s,A is the number of staircase polygons with width r, height s and A; cn,A is the
number of staircase polygons with perimeter 2n and A; A and B are defined by (9) and (10).
It follows from equation (15) that

G1(x, y) =
[
xy

∂2

∂x∂y
P (x, y) − P1(x, y)

] /
2

= xy(1 − x − y)

2[1 − 2x − 2y + (x − y)2]3/2
− xy

2[1 − 2x − 2y + (x − y)2]
. (26)

It is well known that the Temperley method [9] can be applied for classes of column-
convex polygons in order to obtain explicit expressions for generating functions with respect
to counting parameters such as perimeter, height, width, last column height and area [12].
We shall use the methods of Lin [8] and Temperley [9] to derive the generating functions G2

and G3.
The generating function P(x, y) for the isotropic staircase polygons can be written in the

form

P(x, y) =
∞∑

m=1

Sm(x, y) (27)
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Figure 2. When one unit square is placed near the upper-right corner of a staircase polygon with
height s, the area of A is increased by s − 1 as shown by three unit squares with cross.

where Sm is the generating function corresponding to all polygons whose width at the top is
m. It can be shown [4] that

Sm+1 = xSm + y

∞∑
n=0

Sm+n+1 (28)

where S0 = y. It follows from equation (28) that

Sm+1 = (1 + x − y)Sm − xSm−1 (29)

and the solution of this recursion relation is [4]

Sm = yum (30)

where

u = [
1 + x − y −

√
(1 − x − y)2 − 4xy

]/
2 (31)

is a root of the equation

u2 − (1 + x − y)u + x = 0. (32)

The generating function G1(x, y) can also be written in the form [6]

G1(x, y) =
∞∑

m=1

S ′
m(x, y) (33)

where

S ′
m+1 = xS ′

m + y

∞∑
n=0

S ′
m+n+1 + x

[
y

∂

∂y
− 1

]
Sm. (34)

The last term in equation (34) is explained as follows. Consider a staircase polygon with
height s whose top row width is m. If we put one unit square to the upper-right corner as
shown in figure 2, then the area of A is increased by s − 1.

It follows from equations (30) and (34) that

S ′
m+1 − (1 + x − y)S ′

m + xS ′
m−1 = x

[
y

∂

∂y
− 1

]
(Sm − Sm−1)

= xy2[mum − (m − 1)um−1]

[1 − 2x − 2y + (x − y)2]1/2
(35)

and the solution is

S ′
m = [am(m − 1)/2 + bm]um (36)
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where

a = y2
[
1 − x − y +

√
1 − 2x − 2y + (x − y)2

]
2[1 − 2x − 2y + (x − y)2]

b = xy2
[
1 − x + y −

√
1 − 2x − 2y + (x − y)2

]
2[1 − 2x − 2y + (x − y)2]3/2

.

The generating function G2(z) can be written in the form

G2(z) =
∞∑

m=1

Hm(z) (37)

where

Hm+1(z) = zHm(z) + z

∞∑
n=0

Hm+n+1(z) + �m(z) (38)

�m(z) =
[
x

(
y

∂

∂y
− 1

)2

Sm(x, y)

]
x=y=z

=
[

m2z4

1 − 4z
+

mz3(1 − 3z)

(1 − 4z)3/2

]
wm (39)

w = 1 − √
1 − 4z

2
. (40)

The last term in equation (38) follows from the fact that when we put one unit square to
the upper-right corner of the staircase polygon as shown in figure 2, then the value of B is
increased by (s − 1)2. The solution of the recursion relation

Hm+1 − Hm + zHm−1 = �m − �m−1 (41)

is

Hm = [a′m(m − 1)(m − 2)/6 + b′m(m − 1)/2 + c′m]wm (42)

where

a′ = z3(1 − 2z)

(1 − 4z)3/2
+

z3

1 − 4z

b′ = z2(1 − 2z − 4z2)

2(1 − 4z)3/2
+

z2(1 − 2z)2

2(1 − 4z)2

c′ = z2(−2 + 5z − z2)

2(1 − 4z)3/2
+

z2(−2 + 8z − 9z2)

2(1 − 4z)2
.

The generating function G2 can be derived from

H2 − wH1 = (b′ + c′)w2 = z(1 − w)G2 + �1 (43)

and the result is

G2(z) = z2(1 − 2z)2

2(1 − 4z)5/2
− z2(1 − 2z)

2(1 − 4z)2
. (44)

The generating function G3(z) can be written in the form

G3(z) =
∞∑

m=1

S ′′
m(z). (45)



Comment 1425

It follows from

(A + s − 1)2 = A2 + 2A(s − 1) + (s − 1)2 (46)

that

S ′′
m+1(z) = zS ′′

m(z) + z

∞∑
n=0

S ′′
m+n+1(z) + �′

m(z) + �m(z) (47)

�′
m(z) =

[
2x

(
y

∂

∂y
− 1

)
S ′

m(x, y)

]
x=y=z

. (48)

The recursion relation is

S ′′
m+1 − S ′′

m + zS ′′
m−1 = �′

m − �′
m−1 + �m − �m−1 (49)

whose solution is

S ′′
m = [a′′m(m − 1)(m − 2)(m − 3)/24 + b′′m(m − 1)(m − 2)/6 + c′′m(m − 1)/2 + d ′′m]wm

(50)

where

a′′ = 3z3(1 − 2z)

(1 − 4z)3/2
+

3z3(1 − 4z + 2z2)

(1 − 4z)2

b′′ = z2(1 − 4z − 3z2 + 21z3)

(1 − 4z)5/2
+

z2(1 − 2z − 5z2 + 9z3)

(1 − 4z)2

c′′ = z2(1 − 6z + 18z2 − 8z3)

2(1 − 4z)5/2
+

z2(1 − 8z + 18z2 + 12z3 − 12z4)

2(1 − 4z)3

d ′′ = z2(−2 + 21z − 79z2 + 66z3 + 30z4)

2(1 − 4z)7/2
+

z2(−2 + 16z − 35z2 + 24z3 + 6z4)

2(1 − 4z)3
.

The generating function G3 can be derived from

S ′′
2 − wS ′′

1 = (c′′ + d ′′)w2 = z(1 − w)G3 + �1 + �′
1 (51)

and the result is

G3(z) = z2(1 − 6z + 18z2 − 28z3 + 12z4)

2(1 − 4z)7/2
− z2(1 − 4z + 10z2 − 8z3)

2(1 − 4z)3
. (52)

We have

R4(z) = −4G3(z) (53)

R6(z) = 2z
d

dz
G2(z) = 2z2(1 − 5z + 12z2 − 12z3)

(1 − 4z)7/2
− 2z2(1 − 3z + 4z2)

(1 − 4z)3
, (54)

and the final result is

R(z) = R1(z) + R2(z) + R3(z) + 2R4(z) + 4R6(z)

= z(1 − 6z + 24z2 − 60z3 + 64z4)

(1 − 4z)7/2
− z, (55)

which was derived by Jensen nonrigorously [1].
The methods of Temperley [9] and Lin [8] can be applied to derive the remaining two

generating functions conjectured by Jensen for the directed convex and convex polygons. It
is possible to treat higher moments of the radius of gyration by similar methods.
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